Logistic Regression with H2O Deep Learning in Scala

Share on Facebook0Share on Google+0Tweet about this on TwitterShare on LinkedIn0

Here is the sample code which show using Feed Forward Network based Deep Learning algorithms from H2O to perform a logistic regression .

First lets import key classes specific to H2O

import org.apache.spark.h2o._
import water.Key
import java.io.File

Now we will create H2O context so we can call key H2O function specific to data ingest and Deep Learning algorithms:

val h2oContext = H2OContext.getOrCreate(sc)
import h2oContext._
import h2oContext.implicits._

Lets import data from local file system as H2O Data Frame:

val prostateData = new H2OFrame(new File("/Users/avkashchauhan/src/github.com/h2oai/sparkling-water/examples/smalldata/prostate.csv"))

Now lets import Deep Learning classes:

import root.hex.deeplearning.DeepLearning
import root.hex.deeplearning.DeepLearningModel.DeepLearningParameters

Now we will define all key parameters specific to H2O Deep Learning Algorithm

val dlParams = new DeepLearningParameters()
dlParams._epochs = 100
dlParams._train = prostateData
dlParams._response_column = 'CAPSULE
dlParams._variable_importances = true
dlParams._nfolds = 5
dlParams._seed = 1111
dlParams._keep_cross_validation_predictions = true;

Now we will create the Deep Learning Algorithm key first and then start the deep learning algorithm in blocking mode:

val dl = new DeepLearning(dlParams, Key.make("dlProstateModel.hex"))
val dlModel = dl.trainModel.get()

Lets learn more about our model:


Now we can perform the prediction by passing an H2O Dataframe (Here I am simply passing the original data frame however you can load your test  data frame and pass it as H2O frame to perform prediction.):

val predictionH2OFrame = dlModel.score(prostateData)('predict)
val predictionsFromModel = asRDD[DoubleHolder](predictionH2OFrame).collect.map(_.result.getOrElse(Double.NaN))

Thats it, enjoy!!




Share on Facebook0Share on Google+0Tweet about this on TwitterShare on LinkedIn0